Residence time influences on phytoplankton diversity and eutrophication response in estuaries and coastal waterbodies

ERF 2005, Norfolk, Virginia Session SPS-32 Utility of Residence Time and Related Concepts in Estuarine Studies October 17, 2005 <u>http://www.eutro.org</u>

S.B. Bricker J.G. Ferreira W. J. Wolff T.C. Simas NOAA IMAR University of Groningen IMAR

The Assessment Approach

Symptoms and Consequences of Nutrient Enrichment

ASSETS: Pressure - State - Response

P: Overall Human Influence (OHI) – Natural processing + Human Nutrient Load S: Overall Eutrophic Condition (OEC) – Condition of waterbody R: Determination of Future Outlook (DFO) – What will happen in the future?

http://www.eutro.org

Five lagoon systems

<u>Portugal</u> Ria Formosa Ria de Aveiro

United States Barnegat Bay Chincoteague Bay Marland Coastal Bays

Five lagoon systems

Maryland Coastal Bays

Key descriptors for five lagoon systems

	Barnegat Bay	MD Inland Bays	Chincoteague Bay	Ria de Aveiro	Ria Formosa
Pressure					
Population (X10 ³)	588-800	19-171	12-108	250-300	124-211
N load (tN y ⁻¹)	720	550	.913	2760	1028
<u>State</u>					
Volume (10 ⁶ m ³)	688	56	267	84	92
Mean depth (m)	1.4	1.1	1.2	1.4	1.9
Mean tidal range (m	n) 0.9	0.7	0.5	2	2
Water temp (°C)	0-31.8	2.0-32	-1-33	10.5-24.5 ^{*1}	14.0-23.8 ^{*1}
Salinity	28	28	29	0.7-35.5 ^{*1}	34.9-37.0 ^{*1}
Res time (days)	27-71	10-21	63	4	0.5-2
<u>Impact</u>					
Main impact Factors	Chlorophyll <i>a</i> HABs Macroalgae	Chlorophyll <i>a</i> HABs Macroalgae	HABs Macroalgae	SAV loss Red tides	Macroalgae Intertidal O ₂ Bivalve death

^{*1}: 5th – 95th percentile

Assessment results for five lagoon systems

	Barnegat Bay	MD Inland Bays	Chincoteague Bay	Ria de Aveiro	Ria Formosa
Residence time	(days) 27-71	10-21	63	4	0.5-2
Susceptibility	н	MH	M	L	ML
Primary Sympto	<u>ms</u>				
Chlorophyll a	H	н	н	H	L
Macroalgae	M	н	н	NP	H
Secondary Sym	<u>otoms</u>				
Dissolved Oxyge	en NP	Μ	M	NP	NP
SAV loss	M			Μ	L
HABs	H	н	H	NP	NP
Overall Eutrophi	C				
Condition	Н	H	н	M	ML
H = High N	/H = Moderate High NP = No Problem	M = Moderate	ML = Modera I = Incre	ML = Moderate Low I = Increase	

Number of phytoplankton species as a function of flushing time

NEEA/ASSETS chlorophyll *a* and HAB

Frequency distribution according to required P_{max}

$$\ln\left(\frac{b_{max}}{b_{ini}}\right) = \left[P - \frac{Q}{V}\left(1 + \frac{S_e}{\Delta S}\right)\right] t$$

OEC Chlorophyll a

NEEA Low

OEC Nuisance and toxic blooms

Frequency (% of each P_{max} class)

Simulation of growth for three hypothetical phytoplankton species

(species A shown on the right axis)

Simulation of nutrient limited growth for three hypothetical phytoplankton species (species A shown on the right axis)

Residence time and species number Correlation and ranges

Species data: 1929-1998

Ferreira et al. 2005 Ecol. Model. 187: 513-523

Concluding Remarks

Residence time influences the diversity of phytoplankton in estuaries

• It also influences the retention of particulate and dissolved pollutants and exerts an influence on the development of eutrophication

 Comparison of five lagoons shows that systems of the same type can develop different symptoms and levels of eutrophication dependent upon residence time

 These results should provide a basis for development of typespecific eutrophication indicators and type-specific management of nutrient related problems